Shells made of structural glass are charming objects from both the aesthetics and the engineering point of view. However, they pose two signicant challenges: the rst one is to assure adequate safety and redundancy concerning possible global collapse; the second one is to guarantee the economy for replacing collapsed components. To address both requirements, this research explores a novel concept where triangular panels of structural glass are both post-tensioned and reinforced to create 3D free-form systems. Hence, the ligree steel truss, made of edges reinforcements, is sized in performance-based perspective to bear at least the weight of all panels in the occurrence of simultaneous cracks (worst-case scenario). The panels are post-tensioned using a set of edge-aligned cables that add benecial compressive stress on the surface. The cable placement and pre-loads are optimized to minimize the tensile stress acting on the shell and match the manufacturing constraints. These shells optimize material usage by providing not only a transparent and fascinating building separation but also load-bearing capabilities. Visual and structural lightness are improved to grid shell competitors.

Concept and cable-tensioning optimization of post-tensioned shells made of structural glass

Laccone F.
;
Malomo L.;Froli M.;
2019-01-01

Abstract

Shells made of structural glass are charming objects from both the aesthetics and the engineering point of view. However, they pose two signicant challenges: the rst one is to assure adequate safety and redundancy concerning possible global collapse; the second one is to guarantee the economy for replacing collapsed components. To address both requirements, this research explores a novel concept where triangular panels of structural glass are both post-tensioned and reinforced to create 3D free-form systems. Hence, the ligree steel truss, made of edges reinforcements, is sized in performance-based perspective to bear at least the weight of all panels in the occurrence of simultaneous cracks (worst-case scenario). The panels are post-tensioned using a set of edge-aligned cables that add benecial compressive stress on the surface. The cable placement and pre-loads are optimized to minimize the tensile stress acting on the shell and match the manufacturing constraints. These shells optimize material usage by providing not only a transparent and fascinating building separation but also load-bearing capabilities. Visual and structural lightness are improved to grid shell competitors.
2019
978-84-121101-0-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1011709
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact