In this paper we address the problem of generating input plans to steer complex dynamical systems in an obstacle-free environment. Plans considered admit a finite description length and are constructed by words on an alphabet of input symbols, which could be e.g. transmitted through a limited capacity channel to a remote system, where they can be decoded in suitable control actions. We show that, by suitable choice of the control encoding, finite plans can be efficiently built for a wide class of dynamical systems, computing arbitrarily close approximations of a desired equilibrium in polynomial time. Moreover, we illustrate by simulations the power of the proposed method, solving the steering problem for an example in the class of underactuated systems, which have attracted wide attention in the recent literature

Symbolic Control for Underactuated Differentially Flat Systems

2006-01-01

Abstract

In this paper we address the problem of generating input plans to steer complex dynamical systems in an obstacle-free environment. Plans considered admit a finite description length and are constructed by words on an alphabet of input symbols, which could be e.g. transmitted through a limited capacity channel to a remote system, where they can be decoded in suitable control actions. We show that, by suitable choice of the control encoding, finite plans can be efficiently built for a wide class of dynamical systems, computing arbitrarily close approximations of a desired equilibrium in polynomial time. Moreover, we illustrate by simulations the power of the proposed method, solving the steering problem for an example in the class of underactuated systems, which have attracted wide attention in the recent literature
2006
0780395050
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/101197
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact