Reservoir Computing (RC) provides an efficient way for designing dynamical recurrent neural models. While training is restricted to a simple output component, the recurrent connections are left untrained after initialization, subject to stability constraints specified by the Echo State Property (ESP). Literature conditions for the ESP typically fail to properly account for the effects of driving input signals, often limiting the potentialities of the RC approach. In this paper, we study the fundamental aspect of asymptotic stability of RC models in presence of driving input, introducing an empirical ESP index that enables to easily analyze the stability regimes of reservoirs. Results on two benchmark datasets reveal interesting insights on the dynamical properties of input-driven reservoirs, suggesting that the actual domain of ESP validity is much wider than what covered by literature conditions commonly used in RC practice.

Chasing the echo state property

Gallicchio Claudio
Primo
2019-01-01

Abstract

Reservoir Computing (RC) provides an efficient way for designing dynamical recurrent neural models. While training is restricted to a simple output component, the recurrent connections are left untrained after initialization, subject to stability constraints specified by the Echo State Property (ESP). Literature conditions for the ESP typically fail to properly account for the effects of driving input signals, often limiting the potentialities of the RC approach. In this paper, we study the fundamental aspect of asymptotic stability of RC models in presence of driving input, introducing an empirical ESP index that enables to easily analyze the stability regimes of reservoirs. Results on two benchmark datasets reveal interesting insights on the dynamical properties of input-driven reservoirs, suggesting that the actual domain of ESP validity is much wider than what covered by literature conditions commonly used in RC practice.
2019
978-287-587-065-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1017348
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact