The relevance of pH assessment in clinical analysis, environmental and industrial control, has raised the demand for the development of portable, low cost and easy-to-use monitoring systems. This paper proposes a pH sensor printed on a paper support passivated with a solid-ink coating. The sensor exploits the pH sensitivity of a reduced graphene oxide functionalized with 3-(4-aminophenil)propionic acid. The sensor responded in the pH range [4, 10] and had a sensitivity of 46 mV/pH. Tests on human plasma and seawater proved this pH sensor to have similar performances than those of a commercial pH-meter with an uncertainty of 0.1 and 0.2 pH unit in plasma and seawater, respectively.
A graphene-based pH sensor on paper for human plasma and seawater
Vivaldi F.;Bonini A.;Melai B.;Poma N.;Kirchhain A.;Santalucia D.;Salvo P.;Di Francesco F.
2019-01-01
Abstract
The relevance of pH assessment in clinical analysis, environmental and industrial control, has raised the demand for the development of portable, low cost and easy-to-use monitoring systems. This paper proposes a pH sensor printed on a paper support passivated with a solid-ink coating. The sensor exploits the pH sensitivity of a reduced graphene oxide functionalized with 3-(4-aminophenil)propionic acid. The sensor responded in the pH range [4, 10] and had a sensitivity of 46 mV/pH. Tests on human plasma and seawater proved this pH sensor to have similar performances than those of a commercial pH-meter with an uncertainty of 0.1 and 0.2 pH unit in plasma and seawater, respectively.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.