The notion of string attractor has recently been introduced in [Prezza, 2017] and studied in [Kempa and Prezza, 2018] to provide a unifying framework for known dictionary-based compressors. A string attractor for a word w = w[1]w[2] · · · w[n] is a subset Γ of the positions 1, . . ., n, such that all distinct factors of w have an occurrence crossing at least one of the elements of Γ. While finding the smallest string attractor for a word is a NP-complete problem, it has been proved in [Kempa and Prezza, 2018] that dictionary compressors can be interpreted as algorithms approximating the smallest string attractor for a given word. In this paper we explore the notion of string attractor from a combinatorial point of view, by focusing on several families of finite words. The results presented in the paper suggest that the notion of string attractor can be used to define new tools to investigate combinatorial properties of the words.

String attractors and combinatorics on words

Rosone G.;
2019-01-01

Abstract

The notion of string attractor has recently been introduced in [Prezza, 2017] and studied in [Kempa and Prezza, 2018] to provide a unifying framework for known dictionary-based compressors. A string attractor for a word w = w[1]w[2] · · · w[n] is a subset Γ of the positions 1, . . ., n, such that all distinct factors of w have an occurrence crossing at least one of the elements of Γ. While finding the smallest string attractor for a word is a NP-complete problem, it has been proved in [Kempa and Prezza, 2018] that dictionary compressors can be interpreted as algorithms approximating the smallest string attractor for a given word. In this paper we explore the notion of string attractor from a combinatorial point of view, by focusing on several families of finite words. The results presented in the paper suggest that the notion of string attractor can be used to define new tools to investigate combinatorial properties of the words.
File in questo prodotto:
File Dimensione Formato  
paper8.pdf

accesso aperto

Descrizione: Published version of his CEUR-WS.org paper
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 575.42 kB
Formato Adobe PDF
575.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1028898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact