Stream processing applications became a representative workload in current computing systems. A significant part of these applications demands parallelism to increase performance. However, programmers are often facing a trade-off between coding productivity and performance when introducing parallelism. SPar was created for balancing this trade-off to the application programmers by using the C++11 attributes’ annotation mechanism. In SPar and other programming frameworks for stream processing applications, the manual definition of the number of replicas to be used for the stream operators is a challenge. In addition to that, low latency is required by several stream processing applications. We noted that explicit latency requirements are poorly considered on the state-of-the-art parallel programming frameworks. Since there is a direct relationship between the number of replicas and the latency of the application, in this work we propose an autonomic and adaptive strategy to choose the proper number of replicas in SPar to address latency constraints. We experimentally evaluated our implemented strategy and demonstrated its effectiveness on a real-world application, demonstrating that our adaptive strategy can provide higher abstraction levels while automatically managing the latency.
Autonomic and latency-aware degree of parallelism management in SPar
Griebler D.;De Sensi D.;Danelutto M.;
2019-01-01
Abstract
Stream processing applications became a representative workload in current computing systems. A significant part of these applications demands parallelism to increase performance. However, programmers are often facing a trade-off between coding productivity and performance when introducing parallelism. SPar was created for balancing this trade-off to the application programmers by using the C++11 attributes’ annotation mechanism. In SPar and other programming frameworks for stream processing applications, the manual definition of the number of replicas to be used for the stream operators is a challenge. In addition to that, low latency is required by several stream processing applications. We noted that explicit latency requirements are poorly considered on the state-of-the-art parallel programming frameworks. Since there is a direct relationship between the number of replicas and the latency of the application, in this work we propose an autonomic and adaptive strategy to choose the proper number of replicas in SPar to address latency constraints. We experimentally evaluated our implemented strategy and demonstrated its effectiveness on a real-world application, demonstrating that our adaptive strategy can provide higher abstraction levels while automatically managing the latency.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.