Graphical linear algebra is a diagrammatic language allowing to reason compositionally about different types of linear computing devices. In this paper, we extend this formalism with a connector for affine behaviour. The extension, which we call graphical affine algebra, is simple but remarkably powerful: it can model systems with richer patterns of behaviour such as mutual exclusion-with modules over the natural numbers as semantic domain-or non-passive electrical components-when considering modules over a certain field. Our main technical contribution is a complete axiomatisation for graphical affine algebra over these two interpretations. We also show, as case studies, how graphical affine algebra captures electrical circuits and the calculus of stateless connectors-a coordination language for distributed systems.
Graphical affine algebra
Bonchi F.;Sobocinski P.;Zanasi F.
2019-01-01
Abstract
Graphical linear algebra is a diagrammatic language allowing to reason compositionally about different types of linear computing devices. In this paper, we extend this formalism with a connector for affine behaviour. The extension, which we call graphical affine algebra, is simple but remarkably powerful: it can model systems with richer patterns of behaviour such as mutual exclusion-with modules over the natural numbers as semantic domain-or non-passive electrical components-when considering modules over a certain field. Our main technical contribution is a complete axiomatisation for graphical affine algebra over these two interpretations. We also show, as case studies, how graphical affine algebra captures electrical circuits and the calculus of stateless connectors-a coordination language for distributed systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.