The Internet of Things (IoT) is leading to a smartification of our society: we are surrounded by many smart devices that automatically collect and exchange data of various kinds and provenance. Many of these data are critical because they are used to train learning algorithms, to control cyber-physical systems or to guide administrators to take decisions. Since the collected data are so important, many devices can be the targets of security attacks. Consequently, it is crucial to be able to trace data and to identify their paths inside a network of smart devices to detect possible threats. To help designers in this threat reasoning, we start from the modelling language IoT-LySa, and propose a Control Flow Analysis, a static analysis technique, for predicting the possible trajectories of data in an IoT system. Trajectories can be used as the basis for checking at design time whether sensitive data can pass through possibly dangerous nodes, and for selecting suitable security mechanisms that guarantee a reliable transport of data from sensors to servers using them. The computed paths are also interesting from an architectural point of view for deciding in which nodes data are collected, processed, communicated and stored.

Analysing the Provenance of IoT Data

Chiara Bodei;
2020-01-01

Abstract

The Internet of Things (IoT) is leading to a smartification of our society: we are surrounded by many smart devices that automatically collect and exchange data of various kinds and provenance. Many of these data are critical because they are used to train learning algorithms, to control cyber-physical systems or to guide administrators to take decisions. Since the collected data are so important, many devices can be the targets of security attacks. Consequently, it is crucial to be able to trace data and to identify their paths inside a network of smart devices to detect possible threats. To help designers in this threat reasoning, we start from the modelling language IoT-LySa, and propose a Control Flow Analysis, a static analysis technique, for predicting the possible trajectories of data in an IoT system. Trajectories can be used as the basis for checking at design time whether sensitive data can pass through possibly dangerous nodes, and for selecting suitable security mechanisms that guarantee a reliable transport of data from sensors to servers using them. The computed paths are also interesting from an architectural point of view for deciding in which nodes data are collected, processed, communicated and stored.
2020
978-3-030-49442-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1050019
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact