Let W be a string of length n over an alphabet, k be a positive integer, and S be a set of length-k substrings of W. The ETFS problem asks us to construct a string XED such that: (i) no string of S occurs in XED; (ii) the order of all other length-k substrings overis the same in W and in XED; and (iii) XED has minimal edit distance to W. When W represents an individual's data and S represents a set of confidential substrings, algorithms solving ETFS can be applied for utility-preserving string sanitization [Bernardini et al., ECML PKDD 2019]. Our first result here is an algorithm to solve ETFS in O(kn2) time, which improves on the state of the art [Bernardini et al., arXiv 2019] by a factor of . Our algorithm is based on a non-trivial modification of the classic dynamic programming algorithm for computing the edit distance between two strings. Notably, we also show that ETFS cannot be solved in O(n2-) time, for any> 0, unless the strong exponential time hypothesis is false. To achieve this, we reduce the edit distance problem, which is known to admit the same conditional lower bound [Bringmann and Künnemann, FOCS 2015], to ETFS. 2012 ACM Subject Classification Theory of computation ! Pattern matching.

String Sanitization under Edit Distance

Pisanti N.;
2020-01-01

Abstract

Let W be a string of length n over an alphabet, k be a positive integer, and S be a set of length-k substrings of W. The ETFS problem asks us to construct a string XED such that: (i) no string of S occurs in XED; (ii) the order of all other length-k substrings overis the same in W and in XED; and (iii) XED has minimal edit distance to W. When W represents an individual's data and S represents a set of confidential substrings, algorithms solving ETFS can be applied for utility-preserving string sanitization [Bernardini et al., ECML PKDD 2019]. Our first result here is an algorithm to solve ETFS in O(kn2) time, which improves on the state of the art [Bernardini et al., arXiv 2019] by a factor of . Our algorithm is based on a non-trivial modification of the classic dynamic programming algorithm for computing the edit distance between two strings. Notably, we also show that ETFS cannot be solved in O(n2-) time, for any> 0, unless the strong exponential time hypothesis is false. To achieve this, we reduce the edit distance problem, which is known to admit the same conditional lower bound [Bringmann and Künnemann, FOCS 2015], to ETFS. 2012 ACM Subject Classification Theory of computation ! Pattern matching.
2020
978-3-95977-149-8
File in questo prodotto:
File Dimensione Formato  
LIPIcs.CPM.2020.7.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 850.96 kB
Formato Adobe PDF
850.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1052788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact