In ultra-wideband (UWB) communications, the typical signal propagation through dense multipath fading offers potentially very large multipath diversity, but at the same time complicates receiver design as far as channel estimation and multipath energy capture are concerned. To strike a desired balance, we propose a multi-symbol differential detection framework that bypasses training or costly channel estimation by the use of autocorrelation principle. Furthermore, resorting properly to the Viterbi algorithm enables to attain an efficient performance versus affordable complexity tradeoff solution. Simulation results demonstrate that the proposed detection scheme is remarkably robust with respect to the effects of both noise and multiple access interference.

Reduced-complexity Multiple Symbol Differential Detection for UWB Communications

LOTTICI, VINCENZO
Co-primo
Writing – Review & Editing
;
2006-01-01

Abstract

In ultra-wideband (UWB) communications, the typical signal propagation through dense multipath fading offers potentially very large multipath diversity, but at the same time complicates receiver design as far as channel estimation and multipath energy capture are concerned. To strike a desired balance, we propose a multi-symbol differential detection framework that bypasses training or costly channel estimation by the use of autocorrelation principle. Furthermore, resorting properly to the Viterbi algorithm enables to attain an efficient performance versus affordable complexity tradeoff solution. Simulation results demonstrate that the proposed detection scheme is remarkably robust with respect to the effects of both noise and multiple access interference.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/105305
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact