This work aims at demonstrating the benefits of integrating co-simulation and formal verification in the standard design flow of a brushless power drive system for precision robotic applications. A sufficient condition on controller gain for system stability is derived from the system’s mathematical model, including a control algorithm for the reduction of cogging torque. Then, using co-simulation and design space exploration, fine tuning of the controller gain parameters has been executed, exploiting the results from the formal verification.

Co-simulation and Verification of a Non-linear Control System for Cogging Torque Reduction in Brushless Motors

Bernardeschi C.
;
Dini P.;Domenici A.;Saponara S.
2020-01-01

Abstract

This work aims at demonstrating the benefits of integrating co-simulation and formal verification in the standard design flow of a brushless power drive system for precision robotic applications. A sufficient condition on controller gain for system stability is derived from the system’s mathematical model, including a control algorithm for the reduction of cogging torque. Then, using co-simulation and design space exploration, fine tuning of the controller gain parameters has been executed, exploiting the results from the formal verification.
2020
978-3-030-57505-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1054183
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact