The amount of data generated is increasing exponentially. However, processing data and producing fast results is a technological challenge. Parallel stream processing can be implemented for handling high frequency and big data flows. The MPI parallel programming model offers low-level and flexible mechanisms for dealing with distributed architectures such as clusters. This paper aims to use it to accelerate video analytics and data visualization applications so that insight can be obtained as soon as the data arrives. Experiments were conducted with a Domain-Specific Language for Geospatial Data Visualization and a Person Recognizer video application. We applied the same stream parallelism strategy and two task distribution strategies. The dynamic task distribution achieved better performance than the static distribution in the HPC cluster. The data visualization achieved lower throughput with respect to the video analytics due to the I/O intensive operations. Also, the MPI programming model shows promising performance outcomes for stream processing applications.
Parallel Stream Processing with MPI for Video Analytics and Data Visualization
Vogel A.;Griebler D.;Mencagli G.;
2020-01-01
Abstract
The amount of data generated is increasing exponentially. However, processing data and producing fast results is a technological challenge. Parallel stream processing can be implemented for handling high frequency and big data flows. The MPI parallel programming model offers low-level and flexible mechanisms for dealing with distributed architectures such as clusters. This paper aims to use it to accelerate video analytics and data visualization applications so that insight can be obtained as soon as the data arrives. Experiments were conducted with a Domain-Specific Language for Geospatial Data Visualization and a Person Recognizer video application. We applied the same stream parallelism strategy and two task distribution strategies. The dynamic task distribution achieved better performance than the static distribution in the HPC cluster. The data visualization achieved lower throughput with respect to the video analytics due to the I/O intensive operations. Also, the MPI programming model shows promising performance outcomes for stream processing applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.