The identification of relevance with little textual context is a primary challenge in passage retrieval. We address this problem with a representation-based ranking approach that: (1) explicitly models the importance of each term using a contextualized language model; (2) performs passage expansion by propagating the importance to similar terms; and (3) grounds the representations in the lexicon, making them interpretable. Passage representations can be pre-computed at index time to reduce query-time latency. We call our approach EPIC (Expansion via Prediction of Importance with Contextualization). We show that EPIC significantly outperforms prior importance-modeling and document expansion approaches. We also observe that the performance is additive with the current leading first-stage retrieval methods, further narrowing the gap between inexpensive and cost-prohibitive passage ranking approaches. Specifically, EPIC achieves a MRR@10 of 0.304 on the MS-MARCO passage ranking dataset with 78ms average query latency on commodity hardware. We also find that the latency is further reduced to 68ms by pruning document representations, with virtually no difference in effectiveness.

Expansion via Prediction of Importance with Contextualization

Nardini F. M.;Perego R.;Tonellotto N.
;
2020-01-01

Abstract

The identification of relevance with little textual context is a primary challenge in passage retrieval. We address this problem with a representation-based ranking approach that: (1) explicitly models the importance of each term using a contextualized language model; (2) performs passage expansion by propagating the importance to similar terms; and (3) grounds the representations in the lexicon, making them interpretable. Passage representations can be pre-computed at index time to reduce query-time latency. We call our approach EPIC (Expansion via Prediction of Importance with Contextualization). We show that EPIC significantly outperforms prior importance-modeling and document expansion approaches. We also observe that the performance is additive with the current leading first-stage retrieval methods, further narrowing the gap between inexpensive and cost-prohibitive passage ranking approaches. Specifically, EPIC achieves a MRR@10 of 0.304 on the MS-MARCO passage ranking dataset with 78ms average query latency on commodity hardware. We also find that the latency is further reduced to 68ms by pruning document representations, with virtually no difference in effectiveness.
2020
9781450380164
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1054903
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 34
social impact