Fairness, Accountability, Transparency and Explainability have become strong requirements in most practical applications of Artificial Intelligence (AI). Fuzzy sets and systems are recognized world-wide because of their outstanding contribution to model AI systems with a good interpretability-accuracy trade-off. Accordingly, fuzzy sets and systems are at the core of the so-called Explainable AI. ExpliClas is a software as a service which paves the way for interpretable and self-explainable intelligent systems. Namely, this software provides users with both graphical visualizations and textual explanations associated with intelligent classifiers automatically learned from data. This paper presents the new functionality of ExpliClas regarding the generation, evaluation and explanation of fuzzy decision trees along with fuzzy inference-grams. This new functionality is validated with two well-known classification datasets (i.e., Wine and Pima), but also with a real-world beer-style classifier.

Building explanations for fuzzy decision trees with the expliclas software

Ducange P.;
2020-01-01

Abstract

Fairness, Accountability, Transparency and Explainability have become strong requirements in most practical applications of Artificial Intelligence (AI). Fuzzy sets and systems are recognized world-wide because of their outstanding contribution to model AI systems with a good interpretability-accuracy trade-off. Accordingly, fuzzy sets and systems are at the core of the so-called Explainable AI. ExpliClas is a software as a service which paves the way for interpretable and self-explainable intelligent systems. Namely, this software provides users with both graphical visualizations and textual explanations associated with intelligent classifiers automatically learned from data. This paper presents the new functionality of ExpliClas regarding the generation, evaluation and explanation of fuzzy decision trees along with fuzzy inference-grams. This new functionality is validated with two well-known classification datasets (i.e., Wine and Pima), but also with a real-world beer-style classifier.
2020
978-1-7281-6932-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1055592
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 11
social impact