Building on the richness of recent contributions in the field, this paper presents a state-of-the-art CNN analysis method for automatingthe recognition of standardised building components in modern heritage buildings. At the turn of the twentieth century manufacturedbuilding components became widely advertised for specification by architects. Consequently, a form of standardisation across varioustypologies began to take place. During this era of rapid economic and industrialised growth, many forms of public building wereerected. This paper seeks to demonstrate a method for informing the recognition of such elements using deep learning to recognise'families' of elements across a range of buildings in order to retrieve and recognise their technical specifications from the contemporarytrade literature. The method is illustrated through the case of Carnegie Public Libraries in the UK, which provides a unique butubiquitous platform from which to explore the potential for the automated recognition of manufactured standard architecturalcomponents. The aim of enhancing this knowledge base is to use the degree to which these were standardised originally as a means toinform and so support their ongoing care but also that of many other contemporary buildings. Although these libraries are numerous,they are maintained at a local level and as such, their shared challenges for maintenance remain unknown to one another. Additionally,this paper presents a methodology to indirectly retrieve useful indicators and semantics, relating to emerging HBIM families, byapplying deep learning to a varied range of architectural imagery.
Between images and built form: Automating the recognition of standardised building components using deep learning
Pezzica C.
Primo
;
2019-01-01
Abstract
Building on the richness of recent contributions in the field, this paper presents a state-of-the-art CNN analysis method for automatingthe recognition of standardised building components in modern heritage buildings. At the turn of the twentieth century manufacturedbuilding components became widely advertised for specification by architects. Consequently, a form of standardisation across varioustypologies began to take place. During this era of rapid economic and industrialised growth, many forms of public building wereerected. This paper seeks to demonstrate a method for informing the recognition of such elements using deep learning to recognise'families' of elements across a range of buildings in order to retrieve and recognise their technical specifications from the contemporarytrade literature. The method is illustrated through the case of Carnegie Public Libraries in the UK, which provides a unique butubiquitous platform from which to explore the potential for the automated recognition of manufactured standard architecturalcomponents. The aim of enhancing this knowledge base is to use the degree to which these were standardised originally as a means toinform and so support their ongoing care but also that of many other contemporary buildings. Although these libraries are numerous,they are maintained at a local level and as such, their shared challenges for maintenance remain unknown to one another. Additionally,this paper presents a methodology to indirectly retrieve useful indicators and semantics, relating to emerging HBIM families, byapplying deep learning to a varied range of architectural imagery.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.