To accomplish the shared task on dependency parsing we explore the use of a linear transition-based neural dependency parser as well as a combination of three of them by means of a linear tree combination algorithm. We train separate models for each language on the shared task data. We compare our base parser with two biaffine parsers and also present an ensemble combination of all five parsers, which achieves an average UAS 1.88 point lower than the top official submission. For producing the enhanced dependencies, we exploit a hybrid approach, coupling an algorithmic graph transformation of the dependency tree with predictions made by a multitask machine learning model.

Linear Neural Parsing and Hybrid Enhancement for Enhanced Universal Dependencies

Sartiano, D
Secondo
;
Simi, M
Ultimo
2020-01-01

Abstract

To accomplish the shared task on dependency parsing we explore the use of a linear transition-based neural dependency parser as well as a combination of three of them by means of a linear tree combination algorithm. We train separate models for each language on the shared task data. We compare our base parser with two biaffine parsers and also present an ensemble combination of all five parsers, which achieves an average UAS 1.88 point lower than the top official submission. For producing the enhanced dependencies, we exploit a hybrid approach, coupling an algorithmic graph transformation of the dependency tree with predictions made by a multitask machine learning model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1065202
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact