We extend the signal flow calculus—a compositional account of the classical signal flow graph model of computation—to encompass affine behaviour, and furnish it with a novel operational semantics. The increased expressive power allows us to define a canonical notion of contextual equivalence, which we show to coincide with denotational equality. Finally, we characterise the realisable fragment of the calculus: those terms that express the computations of (affine) signal flow graphs.
Contextual Equivalence for Signal Flow Graphs
Bonchi F.;
2020-01-01
Abstract
We extend the signal flow calculus—a compositional account of the classical signal flow graph model of computation—to encompass affine behaviour, and furnish it with a novel operational semantics. The increased expressive power allows us to define a canonical notion of contextual equivalence, which we show to coincide with denotational equality. Finally, we characterise the realisable fragment of the calculus: those terms that express the computations of (affine) signal flow graphs.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.