Stream processing paradigm is present in several applications that apply computations over continuous data flowing in the form of streams (e.g., video feeds, image, and data analytics). Employing self-adaptivity to stream processing applications can provide higher-level programming abstractions and autonomic resource management. However, there are cases where the performance is suboptimal. In this paper, the goal is to optimize parallelism adaptations in terms of stability and accuracy, which can improve the performance of parallel stream processing applications. Therefore, we present a new optimized self-adaptive strategy that is experimentally evaluated. The proposed solution provided high-level programming abstractions, reduced the adaptation overhead, and achieved a competitive performance with the best static executions.
Minimizing Self-adaptation Overhead in Parallel Stream Processing for Multi-cores
Vogel A.;Danelutto M.;
2020-01-01
Abstract
Stream processing paradigm is present in several applications that apply computations over continuous data flowing in the form of streams (e.g., video feeds, image, and data analytics). Employing self-adaptivity to stream processing applications can provide higher-level programming abstractions and autonomic resource management. However, there are cases where the performance is suboptimal. In this paper, the goal is to optimize parallelism adaptations in terms of stability and accuracy, which can improve the performance of parallel stream processing applications. Therefore, we present a new optimized self-adaptive strategy that is experimentally evaluated. The proposed solution provided high-level programming abstractions, reduced the adaptation overhead, and achieved a competitive performance with the best static executions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.