The analysis of similar motions in a network provides useful information for different applications like route recommendation. We are interested in algorithms to efficiently retrieve trajectories that are similar to a given query trajectory. For this task many studies have focused on extracting the geometrical information of trajectories. In this paper we investigate the properties of trajectories moving along the paths of a network. We provide a similarity function by making use of both the temporal aspect of trajectories and the structure of the underlying network. We propose an approximation technique that offers the top-k similar trajectories with respect to a query trajectory in an efficient way with acceptable precision. We investigate our method over real-world networks, and our experimental results show the effectiveness of the proposed method.

Finding Structurally and Temporally Similar Trajectories in Graphs

Roberto Grossi;Andrea Marino;Shima Moghtasedi
2020-01-01

Abstract

The analysis of similar motions in a network provides useful information for different applications like route recommendation. We are interested in algorithms to efficiently retrieve trajectories that are similar to a given query trajectory. For this task many studies have focused on extracting the geometrical information of trajectories. In this paper we investigate the properties of trajectories moving along the paths of a network. We provide a similarity function by making use of both the temporal aspect of trajectories and the structure of the underlying network. We propose an approximation technique that offers the top-k similar trajectories with respect to a query trajectory in an efficient way with acceptable precision. We investigate our method over real-world networks, and our experimental results show the effectiveness of the proposed method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1081160
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact