Large sequencing projects, such as GenomeTrakr and MetaSub, are updated frequently (sometimes daily, in the case of GenomeTrakr) with new data. Therefore, it is imperative that any data structure indexing such data supports efficient updates. Toward this goal, Bannai et al. (TCS, 2020) proposed a data structure named dynamic r-index which is suitable for large genome collections and supports incremental construction; however, it is still not powerful enough to support substantial updates. Here, we develop a novel algorithm for updating the r-index, which we refer to as RIMERGE. Fundamental to our algorithm is the combination of the basics of the dynamic r-index with a known algorithm for merging Burrows-Wheeler Transforms (BWTs). As a result, RIMERGE is capable of performing batch updates in a manner that exploits parallelism while keeping the memory overhead small. We compare our method to the dynamic r-index of Bannai et al. using two different datasets, and show that RIMERGE is between 1.88 to 5.34 times faster on reasonably large inputs.

Efficiently Merging r-indexes

Manzini G.;
2021-01-01

Abstract

Large sequencing projects, such as GenomeTrakr and MetaSub, are updated frequently (sometimes daily, in the case of GenomeTrakr) with new data. Therefore, it is imperative that any data structure indexing such data supports efficient updates. Toward this goal, Bannai et al. (TCS, 2020) proposed a data structure named dynamic r-index which is suitable for large genome collections and supports incremental construction; however, it is still not powerful enough to support substantial updates. Here, we develop a novel algorithm for updating the r-index, which we refer to as RIMERGE. Fundamental to our algorithm is the combination of the basics of the dynamic r-index with a known algorithm for merging Burrows-Wheeler Transforms (BWTs). As a result, RIMERGE is capable of performing batch updates in a manner that exploits parallelism while keeping the memory overhead small. We compare our method to the dynamic r-index of Bannai et al. using two different datasets, and show that RIMERGE is between 1.88 to 5.34 times faster on reasonably large inputs.
2021
978-1-6654-0333-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1119156
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact