We propose a new compressed representation for weighted de Bruijn graphs, which is based on the idea of delta-encoding the variations of k-mer abundances on a spanning branching of the graph. Our new data structure is likely to be of practical value: to give an idea, when combined with the compressed BOSS de Bruijn graph representation, it encodes the weighted de Bruijn graph of a 16x-covered DNA read-set (60M distinct k-mers, k = 28) within 4.15 bits per distinct k-mer and can answer abundance queries in about 60 microseconds on a standard machine. In contrast, state of the art tools declare a space usage of at least 30 bits per distinct k-mer for the same task, which is confirmed by our experiments. As a by-product of our new data structure, we exhibit efficient compressed data structures for answering partial sums on edge-weighted trees, which might be of independent interest.
Compressed weighted de Bruijn graphs
Prezza N.;Venturini R.
2021-01-01
Abstract
We propose a new compressed representation for weighted de Bruijn graphs, which is based on the idea of delta-encoding the variations of k-mer abundances on a spanning branching of the graph. Our new data structure is likely to be of practical value: to give an idea, when combined with the compressed BOSS de Bruijn graph representation, it encodes the weighted de Bruijn graph of a 16x-covered DNA read-set (60M distinct k-mers, k = 28) within 4.15 bits per distinct k-mer and can answer abundance queries in about 60 microseconds on a standard machine. In contrast, state of the art tools declare a space usage of at least 30 bits per distinct k-mer for the same task, which is confirmed by our experiments. As a by-product of our new data structure, we exhibit efficient compressed data structures for answering partial sums on edge-weighted trees, which might be of independent interest.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.