In the modern Internet era the usage of social media such as Twitter and Facebook is constantly increasing. These social media are accumulating a lot of textual data, because individuals often use them for sharing their experiences and personal facts writing text messages. These data hide individual psychological aspects that might represent a valuable alternative source with respect to the classical clinical texts. In many studies, text messages are used to extract individuals psychometric profiles that help in analysing the psychological behaviour of users. Unfortunately, both text messages and psychometric profiles may reveal personal and sensitive information about users, leading to privacy violations. Therefore, in this paper, we propose a study of privacy risk for psychometric profiles: we empirically analyse the privacy risk of different aspects of the psychometric profiles, identifying which psychological facts expose users to an identity disclosure.
Privacy Risk Assessment of Individual Psychometric Profiles
Monreale A.;Naretto F.
2021-01-01
Abstract
In the modern Internet era the usage of social media such as Twitter and Facebook is constantly increasing. These social media are accumulating a lot of textual data, because individuals often use them for sharing their experiences and personal facts writing text messages. These data hide individual psychological aspects that might represent a valuable alternative source with respect to the classical clinical texts. In many studies, text messages are used to extract individuals psychometric profiles that help in analysing the psychological behaviour of users. Unfortunately, both text messages and psychometric profiles may reveal personal and sensitive information about users, leading to privacy violations. Therefore, in this paper, we propose a study of privacy risk for psychometric profiles: we empirically analyse the privacy risk of different aspects of the psychometric profiles, identifying which psychological facts expose users to an identity disclosure.File | Dimensione | Formato | |
---|---|---|---|
DS2021 (23).pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
567.42 kB
Formato
Adobe PDF
|
567.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.