In the theory of graph rewriting, the use of coalescing rules, i.e., of rules which besides deleting and generating graph items, can coalesce some parts of the graph, turns out to be quite useful for modelling purposes, but, at the same time, problematic for the development of a satisfactory partial order concurrent semantics for rewrites. Rewriting over graphs with equivalences, i.e., (typed hyper)-graphs equipped with an equivalence over nodes provides a technically convenient replacement of graph rewriting with coalescing rules, for which a truly concurrent semantics can be easily defined. The expressivity of such a formalism is tested in a setting where coalescing rules typically play a basic role: the encoding of calculi with name passing as graph rewriting systems. Specifically, we show how the (monadic fragment) of the solo calculus, one of the dialect of those calculi whose distinctive feature is name fusion, can be encoded as a rewriting system over graph with equivalences.

Modelling calculi with name mobility using graphs with equivalences

GADDUCCI, FABIO;MONTANARI, UGO GIOVANNI ERASMO
2007-01-01

Abstract

In the theory of graph rewriting, the use of coalescing rules, i.e., of rules which besides deleting and generating graph items, can coalesce some parts of the graph, turns out to be quite useful for modelling purposes, but, at the same time, problematic for the development of a satisfactory partial order concurrent semantics for rewrites. Rewriting over graphs with equivalences, i.e., (typed hyper)-graphs equipped with an equivalence over nodes provides a technically convenient replacement of graph rewriting with coalescing rules, for which a truly concurrent semantics can be easily defined. The expressivity of such a formalism is tested in a setting where coalescing rules typically play a basic role: the encoding of calculi with name passing as graph rewriting systems. Specifically, we show how the (monadic fragment) of the solo calculus, one of the dialect of those calculi whose distinctive feature is name fusion, can be encoded as a rewriting system over graph with equivalences.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/112786
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact