We introduce a family of stochastic models motivated by the study of nonequilibrium steady states of fluid equations. These models decompose the deterministic dynamics of interest into fundamental building blocks, i.e., minimal vector fields preserving some fundamental aspects of the original dynamics. Randomness is injected by sequentially following each vector field for a random amount of time. We show under general assumptions that these random dynamics possess a unique invariant measure and converge almost surely to the original, deterministic model in the small noise limit. We apply our construction to the Lorenz-96 equations, often used in studies of chaos and data assimilation, and Galerkin approximations of the 2D Euler and Navier-Stokes equations. An interesting feature of the models developed is that they apply directly to the conservative dynamics and not just those with excitation and dissipation.

Random Splitting of Fluid Models: Ergodicity and Convergence

Andrea Agazzi;
2022-01-01

Abstract

We introduce a family of stochastic models motivated by the study of nonequilibrium steady states of fluid equations. These models decompose the deterministic dynamics of interest into fundamental building blocks, i.e., minimal vector fields preserving some fundamental aspects of the original dynamics. Randomness is injected by sequentially following each vector field for a random amount of time. We show under general assumptions that these random dynamics possess a unique invariant measure and converge almost surely to the original, deterministic model in the small noise limit. We apply our construction to the Lorenz-96 equations, often used in studies of chaos and data assimilation, and Galerkin approximations of the 2D Euler and Navier-Stokes equations. An interesting feature of the models developed is that they apply directly to the conservative dynamics and not just those with excitation and dissipation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1135379
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact