We study the relationship between cartesian bicategories and a specialisation of Lawvere’s hyperdoctrines, namely elementary existential doctrines. Both provide different ways of abstracting the structural properties of logical systems: the former in algebraic terms based on a string diagrammatic calculus, the latter in universal terms using the fundamental notion of adjoint functor. We prove that these two approaches are related by an adjunction, which can be strengthened to an equivalence by imposing further constraints on doctrines.

On doctrines and cartesian bicategories

Bonchi F.;Santamaria A.;Seeber J.;Sobocinski P.
2021

Abstract

We study the relationship between cartesian bicategories and a specialisation of Lawvere’s hyperdoctrines, namely elementary existential doctrines. Both provide different ways of abstracting the structural properties of logical systems: the former in algebraic terms based on a string diagrammatic calculus, the latter in universal terms using the fundamental notion of adjoint functor. We prove that these two approaches are related by an adjunction, which can be strengthened to an equivalence by imposing further constraints on doctrines.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/1141048
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact