We prove that every finitely generated convex set of finitely supported probability distributions has a unique base. We apply this result to provide an alternative proof of a recent result: the algebraic theory of convex semilattices presents the monad of convex sets of probability distributions.

Presenting convex sets of probability distributions by convex semilattices and unique bases

Bonchi F.;
2021

Abstract

We prove that every finitely generated convex set of finitely supported probability distributions has a unique base. We apply this result to provide an alternative proof of a recent result: the algebraic theory of convex semilattices presents the monad of convex sets of probability distributions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/1141056
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact