Automatic people counting from images has recently drawn attention for urban monitoring in modern Smart Cities due to the ubiquity of surveillance camera networks. Current computer vision techniques rely on deep learning-based algorithms that estimate pedestrian densities in still, individual images. Only a bunch of works take advantage of temporal consistency in video sequences. In this work, we propose a spatio-temporal attentive neural network to estimate the number of pedestrians from surveillance videos. By taking advantage of the temporal correlation between consecutive frames, we lowered state-of-the-art count error by 5% and localization error by 7.5% on the widely-used FDST benchmark.

A Spatio-Temporal Attentive Network for Video-Based Crowd Counting

AVVENUTI, M;
2022-01-01

Abstract

Automatic people counting from images has recently drawn attention for urban monitoring in modern Smart Cities due to the ubiquity of surveillance camera networks. Current computer vision techniques rely on deep learning-based algorithms that estimate pedestrian densities in still, individual images. Only a bunch of works take advantage of temporal consistency in video sequences. In this work, we propose a spatio-temporal attentive neural network to estimate the number of pedestrians from surveillance videos. By taking advantage of the temporal correlation between consecutive frames, we lowered state-of-the-art count error by 5% and localization error by 7.5% on the widely-used FDST benchmark.
2022
9781665497923
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1143129
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact