Data Stream Processing is a pervasive computing paradigm with a wide spectrum of applications. Traditional streaming systems exploit the processing capabilities provided by homogeneous Clusters and Clouds. Due to the transition to streaming systems suitable for IoT/Edge environments, there has been the urgent need of new streaming frameworks and tools tailored for embedded platforms, often available as System-onChips composed of a small multicore CPU and an integrated onchip GPU. Exploiting this hybrid hardware requires special care in the runtime system design. In this paper, we discuss the support provided by the WindFlow library, showing its design principles and its effectiveness on the NVIDIA Jetson Nano board.

Towards Parallel Data Stream Processing on System-on-Chip CPU+GPU Devices

Mencagli G.
Primo
;
Griebler D.
Secondo
;
Danelutto M.
Ultimo
2022-01-01

Abstract

Data Stream Processing is a pervasive computing paradigm with a wide spectrum of applications. Traditional streaming systems exploit the processing capabilities provided by homogeneous Clusters and Clouds. Due to the transition to streaming systems suitable for IoT/Edge environments, there has been the urgent need of new streaming frameworks and tools tailored for embedded platforms, often available as System-onChips composed of a small multicore CPU and an integrated onchip GPU. Exploiting this hybrid hardware requires special care in the runtime system design. In this paper, we discuss the support provided by the WindFlow library, showing its design principles and its effectiveness on the NVIDIA Jetson Nano board.
2022
978-1-6654-6958-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1143474
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact