This paper presents the design of low complexity LDPC codes decoders for the upcoming WiFi (IEEE 802.11n), WiMax (IEEE802.16e) and DVB-S2 standards. A complete exploration of the design space spanning from the decoding schedules, the node processing approximations up to the top-level decoder architecture is detailed. According to this search state-of-the-art techniques for a low complexity design have been adopted in order to meet feasible high throughput decoder implementations. An analysis of the standardized codes from the decoder-aware point of view is also given, presenting, for each one, the implementation challenges (multi rates-length codes) and bottlenecks related to the complete coverage of the standards. Synthesis results on a present 65nm CMOS technology are provided on a generic decoder architecture.
Low Complexity LDPC Code Decoders for Next Generation Standards
FANUCCI, LUCA
2007-01-01
Abstract
This paper presents the design of low complexity LDPC codes decoders for the upcoming WiFi (IEEE 802.11n), WiMax (IEEE802.16e) and DVB-S2 standards. A complete exploration of the design space spanning from the decoding schedules, the node processing approximations up to the top-level decoder architecture is detailed. According to this search state-of-the-art techniques for a low complexity design have been adopted in order to meet feasible high throughput decoder implementations. An analysis of the standardized codes from the decoder-aware point of view is also given, presenting, for each one, the implementation challenges (multi rates-length codes) and bottlenecks related to the complete coverage of the standards. Synthesis results on a present 65nm CMOS technology are provided on a generic decoder architecture.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.