Detecting and characterizing people with mental disorders is an important task that could help the work of different healthcare professionals. Sometimes, a diagnosis for specific mental disorders requires a long time, possibly causing problems because being diagnosed can give access to support groups, treatment programs, and medications that might help the patients. In this paper, we study the problem of exploiting supervised learning approaches, based on users' psychometric profiles extracted from Reddit posts, to detect users dealing with Addiction, Anxiety, and Depression disorders. The empirical evaluation shows an excellent predictive power of the psychometric profile and that features capturing the post's content are more effective for the classification task than features describing the user writing style. We achieve an accuracy of 96% using the entire psychometric profile and an accuracy of 95% when we exclude from the user profile linguistic features.

Detecting Addiction, Anxiety, and Depression by Users Psychometric Profiles

Monreale A.;
2022-01-01

Abstract

Detecting and characterizing people with mental disorders is an important task that could help the work of different healthcare professionals. Sometimes, a diagnosis for specific mental disorders requires a long time, possibly causing problems because being diagnosed can give access to support groups, treatment programs, and medications that might help the patients. In this paper, we study the problem of exploiting supervised learning approaches, based on users' psychometric profiles extracted from Reddit posts, to detect users dealing with Addiction, Anxiety, and Depression disorders. The empirical evaluation shows an excellent predictive power of the psychometric profile and that features capturing the post's content are more effective for the classification task than features describing the user writing style. We achieve an accuracy of 96% using the entire psychometric profile and an accuracy of 95% when we exclude from the user profile linguistic features.
2022
9781450391306
File in questo prodotto:
File Dimensione Formato  
3487553.3524918.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1162664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact