Graph echo state networks (GESN) are a class of reservoir computing models for the efficient and effective processing of graphs. They compute graph embeddings by the convergence to a fixed point of a dynamical system, randomly initialized according to a generalization of the echo state property, called the graph embedding stability (GES) property. In this paper, we prove new and more accurate bounds for necessary and sufficient GES conditions. Experiments demonstrate how these bounds allow an easier parameter selection and better quality reservoirs.

Spectral Bounds for Graph Echo State Network Stability

Tortorella D.
;
Gallicchio C.
;
Micheli A.
2022-01-01

Abstract

Graph echo state networks (GESN) are a class of reservoir computing models for the efficient and effective processing of graphs. They compute graph embeddings by the convergence to a fixed point of a dynamical system, randomly initialized according to a generalization of the echo state property, called the graph embedding stability (GES) property. In this paper, we prove new and more accurate bounds for necessary and sufficient GES conditions. Experiments demonstrate how these bounds allow an easier parameter selection and better quality reservoirs.
2022
978-1-7281-8671-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1185947
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 2
social impact