Rig categories with finite biproducts are categories with two monoidal products, where one is a biproduct and the other distributes over it. In this work we present tape diagrams, a sound and complete diagrammatic language for these categories, that can be intuitively thought as string diagrams of string diagrams. We test the effectiveness of our approach against the positive fragment of Tarski's calculus of relations.

Deconstructing the Calculus of Relations with Tape Diagrams

Bonchi, F;Di Giorgio, A;Santamaria, A
2023-01-01

Abstract

Rig categories with finite biproducts are categories with two monoidal products, where one is a biproduct and the other distributes over it. In this work we present tape diagrams, a sound and complete diagrammatic language for these categories, that can be intuitively thought as string diagrams of string diagrams. We test the effectiveness of our approach against the positive fragment of Tarski's calculus of relations.
2023
Bonchi, F; Di Giorgio, A; Santamaria, A
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1204192
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact