Rig categories with finite biproducts are categories with two monoidal products, where one is a biproduct and the other distributes over it. In this work we present tape diagrams, a sound and complete diagrammatic language for these categories, that can be intuitively thought as string diagrams of string diagrams. We test the effectiveness of our approach against the positive fragment of Tarski's calculus of relations.

Deconstructing the Calculus of Relations with Tape Diagrams

Bonchi, F;Di Giorgio, A;Santamaria, A
2023-01-01

Abstract

Rig categories with finite biproducts are categories with two monoidal products, where one is a biproduct and the other distributes over it. In this work we present tape diagrams, a sound and complete diagrammatic language for these categories, that can be intuitively thought as string diagrams of string diagrams. We test the effectiveness of our approach against the positive fragment of Tarski's calculus of relations.
File in questo prodotto:
File Dimensione Formato  
3571257.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 501.19 kB
Formato Adobe PDF
501.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1204192
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact