Proximity detection is the process of estimating the closeness between a target and a point of interest, and it can be estimated with different technologies and techniques. In this paper we focus on how detecting proximity between people with a TinyML-based approach. We analyze RSS values (Received Signal Strength) estimated by a micro-controller and propagated by Bluetooth's tags. To this purpose, we collect a dataset of Bluetooth RSS signals by considering different postures of the involved people. The dataset is adopted to train and test two neural networks: a fully-connected and an LSTM model that we compress to be executed directly on-board of the micro-controller. Experimental results conducted over the dataset show an average precision and recall metrics of 0.8 with both of the models, and with an inference time less than 1 ms.

A TinyML-Approach to Detect the Proximity of People Based on Bluetooth Low Energy Beacons

Chessa S.
2023-01-01

Abstract

Proximity detection is the process of estimating the closeness between a target and a point of interest, and it can be estimated with different technologies and techniques. In this paper we focus on how detecting proximity between people with a TinyML-based approach. We analyze RSS values (Received Signal Strength) estimated by a micro-controller and propagated by Bluetooth's tags. To this purpose, we collect a dataset of Bluetooth RSS signals by considering different postures of the involved people. The dataset is adopted to train and test two neural networks: a fully-connected and an LSTM model that we compress to be executed directly on-board of the micro-controller. Experimental results conducted over the dataset show an average precision and recall metrics of 0.8 with both of the models, and with an inference time less than 1 ms.
2023
979-8-3503-1222-5
File in questo prodotto:
File Dimensione Formato  
IE_2023_Proximity.pdf

accesso aperto

Descrizione: postprint
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 688.49 kB
Formato Adobe PDF
688.49 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1213149
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact