In synchronous networks-on-chip (NoC), scheduling of packet transmission is required for achieving high throughput, low latency and good fairness, while avoiding packet collisions. Efficient algorithms exist for rearrangeably non-blocking NoC. However, when realized with integrated optical devices, NoC are typically arranged in topologies that are blocking if a single wavelength is used. Mitigation of the blocking behavior is then achieved by exploiting the wavelength domain, which requires however a novel scheduling paradigm. This paper presents an integrated optical NoC based on a ring topology and realized with multiple resonating microrings (MMR). Scheduling in MMR architecture comprises the conventional matching sub-problem along with wavelength assignment sub-problem, which accounts for the additional constraints due to the wavelength domain. A novel scheduling algorithm based on iSLIP algorithm is proposed for jointly addressing both sub-problems. The iterative Parallel Wavelength Matching (iPWM) algorithm achieves performance similar to a two-step scheduler based on sequential iSLIP and first-fit wavelength assignment, but with a computational complexity lower and independent of the number of wavelengths

Fast scheduling based on iterative parallel wavelength matching for a multi-wavelength ring network-on-chip

CERUTTI, Isabella;ANDRIOLLI, Nicola;FARALLI, STEFANO;CASTOLDI, Piero
2015-01-01

Abstract

In synchronous networks-on-chip (NoC), scheduling of packet transmission is required for achieving high throughput, low latency and good fairness, while avoiding packet collisions. Efficient algorithms exist for rearrangeably non-blocking NoC. However, when realized with integrated optical devices, NoC are typically arranged in topologies that are blocking if a single wavelength is used. Mitigation of the blocking behavior is then achieved by exploiting the wavelength domain, which requires however a novel scheduling paradigm. This paper presents an integrated optical NoC based on a ring topology and realized with multiple resonating microrings (MMR). Scheduling in MMR architecture comprises the conventional matching sub-problem along with wavelength assignment sub-problem, which accounts for the additional constraints due to the wavelength domain. A novel scheduling algorithm based on iSLIP algorithm is proposed for jointly addressing both sub-problems. The iterative Parallel Wavelength Matching (iPWM) algorithm achieves performance similar to a two-step scheduler based on sequential iSLIP and first-fit wavelength assignment, but with a computational complexity lower and independent of the number of wavelengths
2015
978-3-9018-8272-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1221292
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 3
social impact