The high-throughput generation of polymeric nanoparticles (PNPs) with tailored size and narrow size distribution is key for applications as relevant as sensing and nanomedicine. Here we show how cavitation bubbles in a microfluidic channel can induce rapid nanoprecipitation of PNPs with user-selectable control. Specifically, we used two tip-electrodes perpendicular to the flow to induce electrical breakdown of a polymer solution and a miscible non-solvent. As a result, a plasma is formed causing cavitation and rapid mixing of the fluids, yielding nanoprecipitates of polymer. We demonstrated mL/min generation of PNPs with a diameter as low as 150 nm and polydispersity below 0.15.

Cavitation-Assisted Micromixing for Polymeric Nanoparticle Generation

Salvatore Surdo
Primo
;
2018-01-01

Abstract

The high-throughput generation of polymeric nanoparticles (PNPs) with tailored size and narrow size distribution is key for applications as relevant as sensing and nanomedicine. Here we show how cavitation bubbles in a microfluidic channel can induce rapid nanoprecipitation of PNPs with user-selectable control. Specifically, we used two tip-electrodes perpendicular to the flow to induce electrical breakdown of a polymer solution and a miscible non-solvent. As a result, a plasma is formed causing cavitation and rapid mixing of the fluids, yielding nanoprecipitates of polymer. We demonstrated mL/min generation of PNPs with a diameter as low as 150 nm and polydispersity below 0.15.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1242157
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact