The development of quantum communication protocols sparked the interest in quantum extensions of process calculi and behavioural equivalences, but defining a bisimilarity that matches the observational properties of a quantum-capable system is a surprisingly difficult task. The two proposals explicitly addressing this issue, qCCS and lqCCS, do not define an algorithmic verification scheme: the bisimilarity of two processes is proven by comparing their behaviour under all input states. We introduce a new semantic model based on effects, i.e. probabilistic predicates on quantum states that represent their observable properties. We define and investigate the properties of effect distributions and effect labelled transition systems (eLTSs), generalizing probability distributions and probabilistic labelled transition systems (pLTSs), respectively. As a proof of concept, we provide an eLTS-based semantics for a minimal quantum process algebra, which we prove sound and complete with respect to the observable probabilistic behaviour of quantum processes. To the best of our knowledge, ours is the first algorithmically verifiable proposal that abides to the properties of quantum theory.

Effect Semantics for Quantum Process Calculi

Lorenzo Ceragioli
Co-primo
Membro del Collaboration Group
;
Fabio Gadducci
Co-primo
Membro del Collaboration Group
;
Giuseppe Lomurno
Co-primo
Membro del Collaboration Group
;
Gabriele Tedeschi
Co-primo
Membro del Collaboration Group
2024-01-01

Abstract

The development of quantum communication protocols sparked the interest in quantum extensions of process calculi and behavioural equivalences, but defining a bisimilarity that matches the observational properties of a quantum-capable system is a surprisingly difficult task. The two proposals explicitly addressing this issue, qCCS and lqCCS, do not define an algorithmic verification scheme: the bisimilarity of two processes is proven by comparing their behaviour under all input states. We introduce a new semantic model based on effects, i.e. probabilistic predicates on quantum states that represent their observable properties. We define and investigate the properties of effect distributions and effect labelled transition systems (eLTSs), generalizing probability distributions and probabilistic labelled transition systems (pLTSs), respectively. As a proof of concept, we provide an eLTS-based semantics for a minimal quantum process algebra, which we prove sound and complete with respect to the observable probabilistic behaviour of quantum processes. To the best of our knowledge, ours is the first algorithmically verifiable proposal that abides to the properties of quantum theory.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1271669
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact