We study nested conditions, a generalization of first-order logic to a categorical setting, and provide a tableau-based (semi-decision) procedure for checking (un)satisfiability and finite model generation. This generalizes earlier results on graph conditions. Furthermore we introduce a notion of witnesses, allowing the detection of infinite models in some cases. To ensure completeness, paths in a tableau must be fair, where fairness requires that all parts of a condition are processed eventually. Since the correctness arguments are non-trivial, we rely on coinductive proof methods and up-to techniques that structure the arguments. We distinguish between two types of categories: categories where all sections are isomorphisms, allowing for a simpler tableau calculus that includes finite model generation; in categories where this requirement does not hold, model generation does not work, but we still obtain a sound and complete calculus.

Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

Andrea Corradini;
2024-01-01

Abstract

We study nested conditions, a generalization of first-order logic to a categorical setting, and provide a tableau-based (semi-decision) procedure for checking (un)satisfiability and finite model generation. This generalizes earlier results on graph conditions. Furthermore we introduce a notion of witnesses, allowing the detection of infinite models in some cases. To ensure completeness, paths in a tableau must be fair, where fairness requires that all parts of a condition are processed eventually. Since the correctness arguments are non-trivial, we rely on coinductive proof methods and up-to techniques that structure the arguments. We distinguish between two types of categories: categories where all sections are isomorphisms, allowing for a simpler tableau calculus that includes finite model generation; in categories where this requirement does not hold, model generation does not work, but we still obtain a sound and complete calculus.
2024
978-3-95977-339-3
File in questo prodotto:
File Dimensione Formato  
2024-LIPICS-CONCUR.2024.39.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 898.73 kB
Formato Adobe PDF
898.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1272650
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact