Data acquisition systems (DAQ) for high energy physics experiments utilize complex FPGAs to handle unprecedented high data rates, especially in the first stages of the data processing chain. The complexity of developing and commissioning these systems increases as additional local processing intelligence is placed closer to the detector directly on the ATCA blades. On the other hand, sophisticated slow control is as well desired. In this contribution, we introduce a novel solution for ATCA based systems, which combines the IPMI, a Linux based slow-control software, and an FPGA for custom slow-control tasks in one single Zynq Ultrascale + (ZUS +) System-on-Chip (SoC) module.
A novel centralized slow control and board management solution for ATCA blades based on the Zynq Ultrascale+ System-on-Chip
Calligaris, Luigi;
2020-01-01
Abstract
Data acquisition systems (DAQ) for high energy physics experiments utilize complex FPGAs to handle unprecedented high data rates, especially in the first stages of the data processing chain. The complexity of developing and commissioning these systems increases as additional local processing intelligence is placed closer to the detector directly on the ATCA blades. On the other hand, sophisticated slow control is as well desired. In this contribution, we introduce a novel solution for ATCA based systems, which combines the IPMI, a Linux based slow-control software, and an FPGA for custom slow-control tasks in one single Zynq Ultrascale + (ZUS +) System-on-Chip (SoC) module.File | Dimensione | Formato | |
---|---|---|---|
epjconf_chep2020_01015.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
4.47 MB
Formato
Adobe PDF
|
4.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.