Composed image retrieval extends traditional content-based image retrieval (CBIR) combining a query image with additional descriptive text to express user intent and specify supplementary requests related to the visual attributes of the query image. This approach holds significant potential for e-commerce applications, such as interactive multimodal searches and chatbots. In our demo, we present an interactive composed image retrieval system based on the SEARLE approach, which tackles this task in a zero-shot manner efficiently and effectively. The demo allows users to perform image retrieval iteratively refining the results using textual feedback.

Zero-Shot Image Retrieval with Human Feedback

Baldrati, Alberto;
2023-01-01

Abstract

Composed image retrieval extends traditional content-based image retrieval (CBIR) combining a query image with additional descriptive text to express user intent and specify supplementary requests related to the visual attributes of the query image. This approach holds significant potential for e-commerce applications, such as interactive multimodal searches and chatbots. In our demo, we present an interactive composed image retrieval system based on the SEARLE approach, which tackles this task in a zero-shot manner efficiently and effectively. The demo allows users to perform image retrieval iteratively refining the results using textual feedback.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1275197
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact