This work explores the potential of Transformer models focusing on the translation of ancient Egyptian hieroglyphs. We present a novel Hieroglyphic Transformer model, built upon the powerful M2M-100 multilingual translation framework and trained on a dataset we customised from the Thesaurus Linguae Aegyptiae database. Our experiments demonstrate promising results, with the model achieving significant accuracy in translating hieroglyphics into both German and English. This work holds significant implications for Egyptology, potentially accelerating the translation process and unlocking new research approaches.

Deep Learning Meets Egyptology: a Hieroglyphic Transformer for Translating Ancient Egyptian

Mattia De Cao
;
Angelo Colonna;Alessandro Lenci
2024-01-01

Abstract

This work explores the potential of Transformer models focusing on the translation of ancient Egyptian hieroglyphs. We present a novel Hieroglyphic Transformer model, built upon the powerful M2M-100 multilingual translation framework and trained on a dataset we customised from the Thesaurus Linguae Aegyptiae database. Our experiments demonstrate promising results, with the model achieving significant accuracy in translating hieroglyphics into both German and English. This work holds significant implications for Egyptology, potentially accelerating the translation process and unlocking new research approaches.
2024
979-8-89176-144-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1276282
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact