n this paper, we examine a fully-discrete finite element approximation of the unsteady p(.,.)-Stokes equations ({i.e.}, p(.,.) is time- and space-dependent), employing a backward Euler step in time and conforming discretely inf-sup stable finite elements in space, for error decay rates for the velocity vector field. More precisely, we derive error decay rates that are optimal with respect to natural fractional regularity assumptions on the velocity vector field and the kinematic pressure. The optimality of the derived error decay rates is confirmed via numerical experiments.

Error analysis for a fully-discrete finite element approximation of the unsteady p(.,.)-Stokes equations

Luigi C. Berselli;Alex Kaltenbach;
2025-01-01

Abstract

n this paper, we examine a fully-discrete finite element approximation of the unsteady p(.,.)-Stokes equations ({i.e.}, p(.,.) is time- and space-dependent), employing a backward Euler step in time and conforming discretely inf-sup stable finite elements in space, for error decay rates for the velocity vector field. More precisely, we derive error decay rates that are optimal with respect to natural fractional regularity assumptions on the velocity vector field and the kinematic pressure. The optimality of the derived error decay rates is confirmed via numerical experiments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1290847
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact