The paper [1] introduces DProvDB, a fine-grained privacy provenance framework. Our reproducibility evaluation shows that the key findings of the paper have been successfully reproduced, with minor discrepancies from the original figures explained by inherent randomness.

Reproducibility Report for ACM SIGMOD 2024 Paper: “DProvDB: Differentially Private Query Processing with Multi-Analyst Provenance”

Giorgio Vinciguerra
;
In corso di stampa

Abstract

The paper [1] introduces DProvDB, a fine-grained privacy provenance framework. Our reproducibility evaluation shows that the key findings of the paper have been successfully reproduced, with minor discrepancies from the original figures explained by inherent randomness.
In corso di stampa
979-8-4007-1179-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1304109
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact