Accurate ship classification is essential for maritime traffic monitoring applications but is significantly hindered by imbalanced datasets. In this paper, we propose a novel methodology that combines curriculum learning with weighted loss functions to address class imbalance in the FUSAR-Ship dataset, facilitating the accurate classification of its nine classes. Our method achieved notable improvements, including a 6.53% average increase in F1-scores compared to baseline models, and successfully identified all classes, including previously misclassified ones. To better evaluate model performance on long-tailed datasets, we introduce a novel evaluation metric that provides a more nuanced assessment of classification ability across underrepresented classes. While demonstrated on the FUSAR-Ship dataset, our approach and metric are broadly applicable to other imbalanced classification problems.
A Framework for Imbalanced SAR Ship Classification: Curriculum Learning, Weighted Loss Functions, and a Novel Evaluation Metric
Awais, Ch Muhammad
;Reggiannini, Marco;
2025-01-01
Abstract
Accurate ship classification is essential for maritime traffic monitoring applications but is significantly hindered by imbalanced datasets. In this paper, we propose a novel methodology that combines curriculum learning with weighted loss functions to address class imbalance in the FUSAR-Ship dataset, facilitating the accurate classification of its nine classes. Our method achieved notable improvements, including a 6.53% average increase in F1-scores compared to baseline models, and successfully identified all classes, including previously misclassified ones. To better evaluate model performance on long-tailed datasets, we introduce a novel evaluation metric that provides a more nuanced assessment of classification ability across underrepresented classes. While demonstrated on the FUSAR-Ship dataset, our approach and metric are broadly applicable to other imbalanced classification problems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


