The segmentation of the Inferior Alveolar Canal (IAC) plays a central role in maxillofacial surgery, drawing significant attention in the current research. Because of their outstanding results, deep learning methods are widely adopted in the segmentation of 3D medical volumes, including the IAC in Cone Beam Computed Tomography (CBCT) data. One of the main challenges when segmenting large volumes, including those obtained through CBCT scans, arises from the use of patch-based techniques, mandatory to fit memory constraints. Such training approaches compromise neural network performance due to a reduction in the global contextual information. Performance degradation is prominently evident when the target objects are small with respect to the background, as it happens with the inferior alveolar nerve that develops across the mandible, but involves only a few voxels of the entire scan. In order to target this issue and push state-of-the-art performance in the segmentation of the IAC, we propose an innovative approach that exploits spatial information of extracted patches and integrates it into a Transformer architecture. By incorporating prior knowledge about patch location, our model improves state of the art by ∼2 points on the Dice score when integrated with the standard U-Net architecture. The source code of our proposal is publicly released.

Location Matters: Harnessing Spatial Information to Enhance the Segmentation of the Inferior Alveolar Canal in CBCTs

Pipoli, Vittorio
Secondo
;
2025-01-01

Abstract

The segmentation of the Inferior Alveolar Canal (IAC) plays a central role in maxillofacial surgery, drawing significant attention in the current research. Because of their outstanding results, deep learning methods are widely adopted in the segmentation of 3D medical volumes, including the IAC in Cone Beam Computed Tomography (CBCT) data. One of the main challenges when segmenting large volumes, including those obtained through CBCT scans, arises from the use of patch-based techniques, mandatory to fit memory constraints. Such training approaches compromise neural network performance due to a reduction in the global contextual information. Performance degradation is prominently evident when the target objects are small with respect to the background, as it happens with the inferior alveolar nerve that develops across the mandible, but involves only a few voxels of the entire scan. In order to target this issue and push state-of-the-art performance in the segmentation of the IAC, we propose an innovative approach that exploits spatial information of extracted patches and integrates it into a Transformer architecture. By incorporating prior knowledge about patch location, our model improves state of the art by ∼2 points on the Dice score when integrated with the standard U-Net architecture. The source code of our proposal is publicly released.
2025
9783031781032
9783031781049
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1324627
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact