The surge in small satellite and CubeSat deployments has led to a diversification of feasible missions, driving a shift from emphasizing simplicity and low-cost to prioritizing performance while maintaining cost-efficiency. Integration of small payloads and advancements in technology have enhanced CubeSat capabilities, enabling the development of high-performance platforms. EXCITE, a 16U CubeSat mission, will demonstrate five different technologies in the LEO environment, including propulsion systems, a reconfigurable antenna, and on-board processing capabilities. To maximize EXCITE's capabilities and accommodate diverse payloads for various mission scenarios, multiple optimization strategies have been implemented. This includes thorough orbit analysis to determine the most suitable orbit for mission objectives, considering factors such as beta angles and eclipse time. The use of a chemical thruster provides flexibility in mission design by allowing adjustments to orbital altitude and ground-track patterns. Additionally, careful scheduling of orbital maneuvers is crucial for maximizing access time to specific ground stations and optimizing data downlink opportunities. Managing complex interactions between design variables necessitates advanced optimization techniques like gradientbased algorithms. OpenMDAO offers a robust framework for tackling multidisciplinary design optimization problems efficiently, facilitating exploration of trade-offs between competing design objectives.

Optimization strategies for a 16U CubeSat mission

Gemignani M.
2024-01-01

Abstract

The surge in small satellite and CubeSat deployments has led to a diversification of feasible missions, driving a shift from emphasizing simplicity and low-cost to prioritizing performance while maintaining cost-efficiency. Integration of small payloads and advancements in technology have enhanced CubeSat capabilities, enabling the development of high-performance platforms. EXCITE, a 16U CubeSat mission, will demonstrate five different technologies in the LEO environment, including propulsion systems, a reconfigurable antenna, and on-board processing capabilities. To maximize EXCITE's capabilities and accommodate diverse payloads for various mission scenarios, multiple optimization strategies have been implemented. This includes thorough orbit analysis to determine the most suitable orbit for mission objectives, considering factors such as beta angles and eclipse time. The use of a chemical thruster provides flexibility in mission design by allowing adjustments to orbital altitude and ground-track patterns. Additionally, careful scheduling of orbital maneuvers is crucial for maximizing access time to specific ground stations and optimizing data downlink opportunities. Managing complex interactions between design variables necessitates advanced optimization techniques like gradientbased algorithms. OpenMDAO offers a robust framework for tackling multidisciplinary design optimization problems efficiently, facilitating exploration of trade-offs between competing design objectives.
2024
9781644903186
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1334751
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact