The research presented here developed from rather mysterious observations, originally made by the authors independently and in different circumstances, that Lebesgue null sets may have uniquely defined tangent directions that are still seen even if the set is much enlarged (but still kept Lebesgue null). This phenomenon appeared, for example, in the rank-one property of derivatives of BV functions and, perhaps in its most striking form, in attempts to decide whether Rademacher theorem on differentiability of Lipschitz functions may be strengthened or not. We describe the non-differentiability sets of Lipschitz functions on $R^n$ and use this description to explain the development of the ideas and various approaches to the definition of the tangent fields to null sets. We also indicate connections to other current results, including results related to the study of structure of sets of small measure, and present some of the main remaining open problems.

Differentiability of Lipschitz functions, structure of null sets, and other problems

ALBERTI, GIOVANNI;
2010-01-01

Abstract

The research presented here developed from rather mysterious observations, originally made by the authors independently and in different circumstances, that Lebesgue null sets may have uniquely defined tangent directions that are still seen even if the set is much enlarged (but still kept Lebesgue null). This phenomenon appeared, for example, in the rank-one property of derivatives of BV functions and, perhaps in its most striking form, in attempts to decide whether Rademacher theorem on differentiability of Lipschitz functions may be strengthened or not. We describe the non-differentiability sets of Lipschitz functions on $R^n$ and use this description to explain the development of the ideas and various approaches to the definition of the tangent fields to null sets. We also indicate connections to other current results, including results related to the study of structure of sets of small measure, and present some of the main remaining open problems.
2010
9789814324304
9789814462938
9789814324335
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/136387
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 30
social impact