Abstract. The electrostatic decay enables energy transfer from a finite amplitude Langmuir to a backscattered daughter Langmuir wave and ion acoustic density fluctuations. This mechanism is thought to be a first step for the generation of type III solar radio emissions at twice the plasma frequency. The electrostatic decay is here investigated through Vlasov-Poisson simulations by considering Langmuir localized wave packets in the case Te = Tp. Simulation results are found to be in good agreement with recently reported observations from the STEREO mission of the electrostatic decay of beam-driven Langmuir waves during a type III burst.

Vlasov simulations of Langmuir Electrostatic Decay and consequences for Type III observations

HENRI, PIERRE REMI ANTOINE;CALIFANO, FRANCESCO;
2010-01-01

Abstract

Abstract. The electrostatic decay enables energy transfer from a finite amplitude Langmuir to a backscattered daughter Langmuir wave and ion acoustic density fluctuations. This mechanism is thought to be a first step for the generation of type III solar radio emissions at twice the plasma frequency. The electrostatic decay is here investigated through Vlasov-Poisson simulations by considering Langmuir localized wave packets in the case Te = Tp. Simulation results are found to be in good agreement with recently reported observations from the STEREO mission of the electrostatic decay of beam-driven Langmuir waves during a type III burst.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/143972
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact