In this work we propose two pixel-wise change detection techniques for unsupervised network infrastructure monitoring in SAR imagery applications. The first algorithm is inspired by a well known algorithm, named RX, proposed to deal with anomaly detection in optical images. The second algorithm is a statistical based procedure, which exploits a nonparametric approach for estimating the probability density function of the image pair. In order to test and validate the proposed methods, we analyze a spot light amplitude COSMO-SkyMed image pair at one-meter spatial resolution acquired on a complex urban scenario. Experimental results obtained on the available dataset are presented and discussed.
Unsupervised change detection in very high spatial resolution Cosmo-SkyMed SAR images
Acito N;CORSINI, GIOVANNI;DIANI, MARCO;
2012-01-01
Abstract
In this work we propose two pixel-wise change detection techniques for unsupervised network infrastructure monitoring in SAR imagery applications. The first algorithm is inspired by a well known algorithm, named RX, proposed to deal with anomaly detection in optical images. The second algorithm is a statistical based procedure, which exploits a nonparametric approach for estimating the probability density function of the image pair. In order to test and validate the proposed methods, we analyze a spot light amplitude COSMO-SkyMed image pair at one-meter spatial resolution acquired on a complex urban scenario. Experimental results obtained on the available dataset are presented and discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.