One of the greatest pleasures in doing mathematics (and one of the surest signs of being onto something really relevant) is discovering that two apparently completely unrelated objects actually are one and the same thing. This is what Étienne Ghys, of the École Normale Superieure de Lyon, did a few years ago (see [1] for the technical details), showing that the class of Lorenz knots, pertaining to the theory of chaotic dynamical systems and ordinary differential equations, and the class of modular knots, pertaining to the theory of 2-dimensional lattices and to number theory, coincide. In this short note we shall try to explain what Lorenz and modular knots are, and to give a hint of why they are the same. See also [2] for a more detailed but still accessible presentation, containing the beautiful pictures and animations prepared by Jos Leys [3], a digital artist, to illustrate Ghys’ results.

The many faces of Lorenz knots

ABATE, MARCO
2012-01-01

Abstract

One of the greatest pleasures in doing mathematics (and one of the surest signs of being onto something really relevant) is discovering that two apparently completely unrelated objects actually are one and the same thing. This is what Étienne Ghys, of the École Normale Superieure de Lyon, did a few years ago (see [1] for the technical details), showing that the class of Lorenz knots, pertaining to the theory of chaotic dynamical systems and ordinary differential equations, and the class of modular knots, pertaining to the theory of 2-dimensional lattices and to number theory, coincide. In this short note we shall try to explain what Lorenz and modular knots are, and to give a hint of why they are the same. See also [2] for a more detailed but still accessible presentation, containing the beautiful pictures and animations prepared by Jos Leys [3], a digital artist, to illustrate Ghys’ results.
2012
9788847024267
File in questo prodotto:
File Dimensione Formato  
Abate_Lorenz knot.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 763.04 kB
Formato Adobe PDF
763.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/158462
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact