One of the greatest pleasures in doing mathematics (and one of the surest signs of being onto something really relevant) is discovering that two apparently completely unrelated objects actually are one and the same thing. This is what Étienne Ghys, of the École Normale Superieure de Lyon, did a few years ago (see [1] for the technical details), showing that the class of Lorenz knots, pertaining to the theory of chaotic dynamical systems and ordinary differential equations, and the class of modular knots, pertaining to the theory of 2-dimensional lattices and to number theory, coincide. In this short note we shall try to explain what Lorenz and modular knots are, and to give a hint of why they are the same. See also [2] for a more detailed but still accessible presentation, containing the beautiful pictures and animations prepared by Jos Leys [3], a digital artist, to illustrate Ghys’ results.
The many faces of Lorenz knots
ABATE, MARCO
2012-01-01
Abstract
One of the greatest pleasures in doing mathematics (and one of the surest signs of being onto something really relevant) is discovering that two apparently completely unrelated objects actually are one and the same thing. This is what Étienne Ghys, of the École Normale Superieure de Lyon, did a few years ago (see [1] for the technical details), showing that the class of Lorenz knots, pertaining to the theory of chaotic dynamical systems and ordinary differential equations, and the class of modular knots, pertaining to the theory of 2-dimensional lattices and to number theory, coincide. In this short note we shall try to explain what Lorenz and modular knots are, and to give a hint of why they are the same. See also [2] for a more detailed but still accessible presentation, containing the beautiful pictures and animations prepared by Jos Leys [3], a digital artist, to illustrate Ghys’ results.File | Dimensione | Formato | |
---|---|---|---|
Abate_Lorenz knot.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
763.04 kB
Formato
Adobe PDF
|
763.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.