It is well-known that a term rewriting system can be faithfully described by a cartesian 2-category, where horizontal arrows represent terms, and cells represent rewriting sequences. In this paper we propose a similar, original 2-categorical presentation for term graph rewriting. Building on a recente result, which shows that term graphs over a given signature are in one-to-one correspondence with arrows of a gs-monoidal category freely generated from the signature, we associate with a term graph rewriting system a gs-monoidal 2-category, and show that cells faithfully represent its rewriting sequences. We exploit the categorical framework to relate term graph rewriting and term rewriting, since gs-monoidal (2-)categories can be regarded as “weak” cartesian (2-) categories, where certain (2-)naturality axioms have been dropped.
A 2-Categorical Presentation of Term Graph Rewriting
CORRADINI, ANDREA;GADDUCCI, FABIO
1997-01-01
Abstract
It is well-known that a term rewriting system can be faithfully described by a cartesian 2-category, where horizontal arrows represent terms, and cells represent rewriting sequences. In this paper we propose a similar, original 2-categorical presentation for term graph rewriting. Building on a recente result, which shows that term graphs over a given signature are in one-to-one correspondence with arrows of a gs-monoidal category freely generated from the signature, we associate with a term graph rewriting system a gs-monoidal 2-category, and show that cells faithfully represent its rewriting sequences. We exploit the categorical framework to relate term graph rewriting and term rewriting, since gs-monoidal (2-)categories can be regarded as “weak” cartesian (2-) categories, where certain (2-)naturality axioms have been dropped.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.